Blind Signal Separation Through Cooperating ANNs
نویسندگان
چکیده
This paper is devoted to proposing and testing a strategy for decomposing compound signals obtained in remote sensing applications through the automatic generation of cooperating ANNs that model it. Each ANN will specialize in one of the primitives that make up the whole. The evolutionary based algorithm that is proposed for this purpose implies that the combination of networks takes place at a phenotypic operational level, this is, the architecture of the networks is not the issue, but rather function they implement. This way, a population of networks that are automatically classified into different species depending on the performance of their phenotype, and individuals of each species cooperate forming a group to obtain a complex output, in this case the signal that is required. The magnitude that reflects the difference between ANNs is their affinity vector, which must be automatically created and modified depending on the actuation of the phenotype of each individual. The main objective of this approach is to model complex functions such as multidimensional signals, which are typical of remote sensing application, providing a decomposition of them into primitive functions.
منابع مشابه
Blind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملBlind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملExtraction of Sensory part of Ulnar Nerve Signal Using Blind Source Separation Method
A recorded nerve signal via an electrode is composed of many evokes or action potentials, (originated from individual axons) which may be considered as different initial sources. Recovering these primitive sources in its turn may lead us to the anatomic originations of a nerve signal which will give us outstanding foresights in neural rehabilitations. Accordingly, clinical interests may be r...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005